Defining the nature of thermal intermediate in 3 state folding proteins: apoflavodoxin, a study case.

The early stages of the thermal unfolding of apoflavodoxin have been determined by using atomistic multi microsecond-scale molecular dynamics (MD) simulations complemented with a variety of experimental techniques. Results strongly suggest that the intermediate is reached very early in the thermal u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rebeca García-Fandiño, Pau Bernadó, Sara Ayuso-Tejedor, Javier Sancho, Modesto Orozco
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
Acceso en línea:https://doaj.org/article/98e2b5b6f34847b29722140132b82605
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The early stages of the thermal unfolding of apoflavodoxin have been determined by using atomistic multi microsecond-scale molecular dynamics (MD) simulations complemented with a variety of experimental techniques. Results strongly suggest that the intermediate is reached very early in the thermal unfolding process and that it has the properties of an "activated" form of the native state, where thermal fluctuations in the loops break loop-loop contacts. The unrestrained loops gain then kinetic energy corrupting short secondary structure elements without corrupting the core of the protein. The MD-derived ensembles agree with experimental observables and draw a picture of the intermediate state inconsistent with a well-defined structure and characteristic of a typical partially disordered protein. Our results allow us to speculate that proteins with a well packed core connected by long loops might behave as partially disordered proteins under native conditions, or alternatively behave as three state folders. Small details in the sequence, easily tunable by evolution, can yield to one or the other type of proteins.