Pressure and temperature predictions of Al2O3/water nanofluid flow in a porous pipe for different nanoparticles volume fractions: combination of CFD and ACOFIS
Abstract Artificial intelligence (AI) techniques have illustrated significant roles in finding general patterns of CFD (Computational fluid dynamics) results. This study is conducted to develop combination of the ant colony optimization (ACO) algorithm with the fuzzy inference system (ACOFIS) for le...
Enregistré dans:
Auteurs principaux: | Meisam Babanezhad, Iman Behroyan, Azam Marjani, Saeed Shirazian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/99fe97b4f70e40189af3530e8b6f24c9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results
par: Meisam Babanezhad, et autres
Publié: (2021) -
Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
par: Meisam Babanezhad, et autres
Publié: (2021) -
Prediction of velocity profile of water based copper nanofluid in a heated porous tube using CFD and genetic algorithm
par: Tiziana Ciano, et autres
Publié: (2021) -
Investigation on performance of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) in a combination of CFD modeling for prediction of fluid flow
par: Meisam Babanezhad, et autres
Publié: (2021) -
Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system
par: Meisam Babanezhad, et autres
Publié: (2021)