Capturing hidden regulation based on noise change of gene expression level from single cell RNA-seq in yeast
Abstract Recent progress in high throughput single cell RNA-seq (scRNA-seq) has activated the development of data-driven inferring methods of gene regulatory networks. Most network estimations assume that perturbations produce downstream effects. However, the effects of gene perturbations are someti...
Enregistré dans:
Auteurs principaux: | Thoma Itoh, Takashi Makino |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9a3d106e512c4a54aad2f138fd9fd3f1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Correction: Corrigendum: Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
par: Jong Kyoung Kim, et autres
Publié: (2016) -
RNA-Seq reveals infection-related gene expression changes in Phytophthora capsici.
par: Xiao-Ren Chen, et autres
Publié: (2013) -
Differential expression profile of gluten-specific T cells identified by single-cell RNA-seq.
par: Ying Yao, et autres
Publié: (2021) -
The utility of shallow RNA-Seq for documenting differential gene expression in genes with high and low levels of expression.
par: Joel Atallah, et autres
Publié: (2013) -
Splicing profile by capture RNA-seq identifies pathogenic germline variants in tumor suppressor genes
par: Tyler Landrith, et autres
Publié: (2020)