Generalized and scalable trajectory inference in single-cell omics data with VIA

Scalable trajectory inference for multi-omic single cell datasets is challenging in terms of capturing non-tree complex topologies. Here the authors present a method, VIA, that scales to millions of cells across multiple omic modalities using lazy-teleporting random walks.

Guardado en:
Detalles Bibliográficos
Autores principales: Shobana V. Stassen, Gwinky G. K. Yip, Kenneth K. Y. Wong, Joshua W. K. Ho, Kevin K. Tsia
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/9bd006f35d39495d922c8c86b7b6b9a2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Scalable trajectory inference for multi-omic single cell datasets is challenging in terms of capturing non-tree complex topologies. Here the authors present a method, VIA, that scales to millions of cells across multiple omic modalities using lazy-teleporting random walks.