Generalized and scalable trajectory inference in single-cell omics data with VIA
Scalable trajectory inference for multi-omic single cell datasets is challenging in terms of capturing non-tree complex topologies. Here the authors present a method, VIA, that scales to millions of cells across multiple omic modalities using lazy-teleporting random walks.
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9bd006f35d39495d922c8c86b7b6b9a2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Scalable trajectory inference for multi-omic single cell datasets is challenging in terms of capturing non-tree complex topologies. Here the authors present a method, VIA, that scales to millions of cells across multiple omic modalities using lazy-teleporting random walks. |
---|