Nash Equilibrium of Social-Learning Agents in a Restless Multiarmed Bandit Game

Abstract We study a simple model for social-learning agents in a restless multiarmed bandit (rMAB). The bandit has one good arm that changes to a bad one with a certain probability. Each agent stochastically selects one of the two methods, random search (individual learning) or copying information f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kazuaki Nakayama, Masato Hisakado, Shintaro Mori
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9e250b018c12484b82a9e9fc551d2d65
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!