Nash Equilibrium of Social-Learning Agents in a Restless Multiarmed Bandit Game
Abstract We study a simple model for social-learning agents in a restless multiarmed bandit (rMAB). The bandit has one good arm that changes to a bad one with a certain probability. Each agent stochastically selects one of the two methods, random search (individual learning) or copying information f...
Guardado en:
Autores principales: | Kazuaki Nakayama, Masato Hisakado, Shintaro Mori |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e250b018c12484b82a9e9fc551d2d65 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantum gambling based on Nash-equilibrium
por: Pei Zhang, et al.
Publicado: (2017) -
A terrorism-based differential game: Nash differential game
por: Abd El-Monem A. Megahed
Publicado: (2021) -
Closed-Loop Nash Equilibrium in the Class of Piecewise Constant Strategies in a Linear State Feedback Form for Stochastic LQ Games
por: Vasile Drăgan, et al.
Publicado: (2021) -
Stackelberg-Nash Equilibrium and Perfect Competition in the Solow-Uzawa Growth Model
por: Wei-Bin Zhang
Publicado: (2021) -
An improved predator-prey particle swarm optimization algorithm for Nash equilibrium solution.
por: Yufeng Meng, et al.
Publicado: (2021)