Nash Equilibrium of Social-Learning Agents in a Restless Multiarmed Bandit Game

Abstract We study a simple model for social-learning agents in a restless multiarmed bandit (rMAB). The bandit has one good arm that changes to a bad one with a certain probability. Each agent stochastically selects one of the two methods, random search (individual learning) or copying information f...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Kazuaki Nakayama, Masato Hisakado, Shintaro Mori
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/9e250b018c12484b82a9e9fc551d2d65
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires