Nash Equilibrium of Social-Learning Agents in a Restless Multiarmed Bandit Game
Abstract We study a simple model for social-learning agents in a restless multiarmed bandit (rMAB). The bandit has one good arm that changes to a bad one with a certain probability. Each agent stochastically selects one of the two methods, random search (individual learning) or copying information f...
Enregistré dans:
Auteurs principaux: | Kazuaki Nakayama, Masato Hisakado, Shintaro Mori |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9e250b018c12484b82a9e9fc551d2d65 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Quantum gambling based on Nash-equilibrium
par: Pei Zhang, et autres
Publié: (2017) -
A terrorism-based differential game: Nash differential game
par: Abd El-Monem A. Megahed
Publié: (2021) -
Closed-Loop Nash Equilibrium in the Class of Piecewise Constant Strategies in a Linear State Feedback Form for Stochastic LQ Games
par: Vasile Drăgan, et autres
Publié: (2021) -
Stackelberg-Nash Equilibrium and Perfect Competition in the Solow-Uzawa Growth Model
par: Wei-Bin Zhang
Publié: (2021) -
An improved predator-prey particle swarm optimization algorithm for Nash equilibrium solution.
par: Yufeng Meng, et autres
Publié: (2021)