Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics
How to infer transient cells and cell-fate transitions from snap-shot single cell transcriptome dataset remains a major challenge. Here the authors present a multiscale approach to construct single-cell dynamical manifold, quantify cell stability, and compute transition trajectory and probability be...
Guardado en:
Autores principales: | Peijie Zhou, Shuxiong Wang, Tiejun Li, Qing Nie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e98a51ef4064d648221ae7674fdbde4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Single cell transcriptomics of human epidermis identifies basal stem cell transition states
por: Shuxiong Wang, et al.
Publicado: (2020) -
Inferring spatial and signaling relationships between cells from single cell transcriptomic data
por: Zixuan Cang, et al.
Publicado: (2020) -
Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis
por: Xiannian Zhang, et al.
Publicado: (2021) -
Single-Cell RNA-Seq Analysis Reveals the Acquisition of Cancer Stem Cell Traits and Increase of Cell–Cell Signaling during EMT Progression
por: Federico Bocci, et al.
Publicado: (2021) -
Dynamic regulatory networks of T cell trajectory dissect transcriptional control of T cell state transition
por: Min Yan, et al.
Publicado: (2021)