Identifying domains of applicability of machine learning models for materials science
Machine learning models insufficient for certain screening tasks can still provide valuable predictions in specific sub-domains of the considered materials. Here, the authors introduce a diagnostic tool to detect regions of low expected model error as demonstrated for the case of transparent conduct...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9eb779b7ce2346bab2bcf81c05b1f1a9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|