Identifying domains of applicability of machine learning models for materials science

Machine learning models insufficient for certain screening tasks can still provide valuable predictions in specific sub-domains of the considered materials. Here, the authors introduce a diagnostic tool to detect regions of low expected model error as demonstrated for the case of transparent conduct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christopher Sutton, Mario Boley, Luca M. Ghiringhelli, Matthias Rupp, Jilles Vreeken, Matthias Scheffler
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/9eb779b7ce2346bab2bcf81c05b1f1a9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Machine learning models insufficient for certain screening tasks can still provide valuable predictions in specific sub-domains of the considered materials. Here, the authors introduce a diagnostic tool to detect regions of low expected model error as demonstrated for the case of transparent conducting oxides.