Identifying domains of applicability of machine learning models for materials science
Machine learning models insufficient for certain screening tasks can still provide valuable predictions in specific sub-domains of the considered materials. Here, the authors introduce a diagnostic tool to detect regions of low expected model error as demonstrated for the case of transparent conduct...
Guardado en:
Autores principales: | Christopher Sutton, Mario Boley, Luca M. Ghiringhelli, Matthias Rupp, Jilles Vreeken, Matthias Scheffler |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9eb779b7ce2346bab2bcf81c05b1f1a9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Insightful classification of crystal structures using deep learning
por: Angelo Ziletti, et al.
Publicado: (2018) -
Machine learning identifies scale-free properties in disordered materials
por: Sunkyu Yu, et al.
Publicado: (2020) -
Machine learning in spectral domain
por: Lorenzo Giambagli, et al.
Publicado: (2021) -
Application of supervised machine learning as a method for identifying DEM contact law parameters
por: Piotr Klejment
Publicado: (2021) -
Laser machining of transparent brittle materials: from machining strategies to applications
por: Xie Xiaozhu, et al.
Publicado: (2019)