Low-Light Image Enhancement Based on Generative Adversarial Network
Image enhancement is considered to be one of the complex tasks in image processing. When the images are captured under dim light, the quality of the images degrades due to low visibility degenerating the vision-based algorithms’ performance that is built for very good quality images with better visi...
Guardado en:
Autores principales: | Nandhini Abirami R., Durai Raj Vincent P. M. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f150441369549baa33e0179b06f4e30 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
por: Mingyun Wen, et al.
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Enhancement of Multi-Class Structural Defect Recognition Using Generative Adversarial Network
por: Hyunkyu Shin, et al.
Publicado: (2021) -
A Novel Technique for Image Steganalysis Based on Separable Convolution and Adversarial Mechanism
por: Yuwei Ge, et al.
Publicado: (2021) -
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
por: Giorgio Ciano, et al.
Publicado: (2021)