Low-Light Image Enhancement Based on Generative Adversarial Network
Image enhancement is considered to be one of the complex tasks in image processing. When the images are captured under dim light, the quality of the images degrades due to low visibility degenerating the vision-based algorithms’ performance that is built for very good quality images with better visi...
Enregistré dans:
Auteurs principaux: | Nandhini Abirami R., Durai Raj Vincent P. M. |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9f150441369549baa33e0179b06f4e30 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
par: Mingyun Wen, et autres
Publié: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
par: Chuan Du, et autres
Publié: (2021) -
Enhancement of Multi-Class Structural Defect Recognition Using Generative Adversarial Network
par: Hyunkyu Shin, et autres
Publié: (2021) -
A Novel Technique for Image Steganalysis Based on Separable Convolution and Adversarial Mechanism
par: Yuwei Ge, et autres
Publié: (2021) -
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
par: Giorgio Ciano, et autres
Publié: (2021)