Bayesian optimization with adaptive surrogate models for automated experimental design
Abstract Bayesian optimization (BO) is an indispensable tool to optimize objective functions that either do not have known functional forms or are expensive to evaluate. Currently, optimal experimental design is always conducted within the workflow of BO leading to more efficient exploration of the...
Enregistré dans:
Auteurs principaux: | , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9f2f69e1532d4345b0eb8216ac8fc446 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|