Bayesian optimization with adaptive surrogate models for automated experimental design

Abstract Bayesian optimization (BO) is an indispensable tool to optimize objective functions that either do not have known functional forms or are expensive to evaluate. Currently, optimal experimental design is always conducted within the workflow of BO leading to more efficient exploration of the...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Bowen Lei, Tanner Quinn Kirk, Anirban Bhattacharya, Debdeep Pati, Xiaoning Qian, Raymundo Arroyave, Bani K. Mallick
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/9f2f69e1532d4345b0eb8216ac8fc446
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!