Bayesian optimization with adaptive surrogate models for automated experimental design
Abstract Bayesian optimization (BO) is an indispensable tool to optimize objective functions that either do not have known functional forms or are expensive to evaluate. Currently, optimal experimental design is always conducted within the workflow of BO leading to more efficient exploration of the...
Guardado en:
Autores principales: | Bowen Lei, Tanner Quinn Kirk, Anirban Bhattacharya, Debdeep Pati, Xiaoning Qian, Raymundo Arroyave, Bani K. Mallick |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f2f69e1532d4345b0eb8216ac8fc446 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mechanical behavior predictions of additively manufactured microstructures using functional Gaussian process surrogates
por: Robert Saunders, et al.
Publicado: (2021) -
Deep Bayesian local crystallography
por: Sergei V. Kalinin, et al.
Publicado: (2021) -
Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
por: David Montes de Oca Zapiain, et al.
Publicado: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021) -
A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts
por: Osman Mamun, et al.
Publicado: (2020)