Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data

Identifying enriched gene sets in transcriptomic data is routine analysis. Here, the authors show that conventional gene category enrichment analysis (GCEA) applied to brain-wide atlas data yields biased results and develop a flexible ensemble-based null model framework to enable appropriate inferen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ben D. Fulcher, Aurina Arnatkeviciute, Alex Fornito
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a043385931fd4415a4b3a9fa307ff145
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a043385931fd4415a4b3a9fa307ff145
record_format dspace
spelling oai:doaj.org-article:a043385931fd4415a4b3a9fa307ff1452021-12-02T15:36:11ZOvercoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data10.1038/s41467-021-22862-12041-1723https://doaj.org/article/a043385931fd4415a4b3a9fa307ff1452021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22862-1https://doaj.org/toc/2041-1723Identifying enriched gene sets in transcriptomic data is routine analysis. Here, the authors show that conventional gene category enrichment analysis (GCEA) applied to brain-wide atlas data yields biased results and develop a flexible ensemble-based null model framework to enable appropriate inference in GCEA.Ben D. FulcherAurina ArnatkeviciuteAlex FornitoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ben D. Fulcher
Aurina Arnatkeviciute
Alex Fornito
Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
description Identifying enriched gene sets in transcriptomic data is routine analysis. Here, the authors show that conventional gene category enrichment analysis (GCEA) applied to brain-wide atlas data yields biased results and develop a flexible ensemble-based null model framework to enable appropriate inference in GCEA.
format article
author Ben D. Fulcher
Aurina Arnatkeviciute
Alex Fornito
author_facet Ben D. Fulcher
Aurina Arnatkeviciute
Alex Fornito
author_sort Ben D. Fulcher
title Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
title_short Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
title_full Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
title_fullStr Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
title_full_unstemmed Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
title_sort overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a043385931fd4415a4b3a9fa307ff145
work_keys_str_mv AT bendfulcher overcomingfalsepositivegenecategoryenrichmentintheanalysisofspatiallyresolvedtranscriptomicbrainatlasdata
AT aurinaarnatkeviciute overcomingfalsepositivegenecategoryenrichmentintheanalysisofspatiallyresolvedtranscriptomicbrainatlasdata
AT alexfornito overcomingfalsepositivegenecategoryenrichmentintheanalysisofspatiallyresolvedtranscriptomicbrainatlasdata
_version_ 1718386371424419840