Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
Identifying enriched gene sets in transcriptomic data is routine analysis. Here, the authors show that conventional gene category enrichment analysis (GCEA) applied to brain-wide atlas data yields biased results and develop a flexible ensemble-based null model framework to enable appropriate inferen...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a043385931fd4415a4b3a9fa307ff145 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a043385931fd4415a4b3a9fa307ff145 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a043385931fd4415a4b3a9fa307ff1452021-12-02T15:36:11ZOvercoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data10.1038/s41467-021-22862-12041-1723https://doaj.org/article/a043385931fd4415a4b3a9fa307ff1452021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22862-1https://doaj.org/toc/2041-1723Identifying enriched gene sets in transcriptomic data is routine analysis. Here, the authors show that conventional gene category enrichment analysis (GCEA) applied to brain-wide atlas data yields biased results and develop a flexible ensemble-based null model framework to enable appropriate inference in GCEA.Ben D. FulcherAurina ArnatkeviciuteAlex FornitoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Ben D. Fulcher Aurina Arnatkeviciute Alex Fornito Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data |
description |
Identifying enriched gene sets in transcriptomic data is routine analysis. Here, the authors show that conventional gene category enrichment analysis (GCEA) applied to brain-wide atlas data yields biased results and develop a flexible ensemble-based null model framework to enable appropriate inference in GCEA. |
format |
article |
author |
Ben D. Fulcher Aurina Arnatkeviciute Alex Fornito |
author_facet |
Ben D. Fulcher Aurina Arnatkeviciute Alex Fornito |
author_sort |
Ben D. Fulcher |
title |
Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data |
title_short |
Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data |
title_full |
Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data |
title_fullStr |
Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data |
title_full_unstemmed |
Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data |
title_sort |
overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/a043385931fd4415a4b3a9fa307ff145 |
work_keys_str_mv |
AT bendfulcher overcomingfalsepositivegenecategoryenrichmentintheanalysisofspatiallyresolvedtranscriptomicbrainatlasdata AT aurinaarnatkeviciute overcomingfalsepositivegenecategoryenrichmentintheanalysisofspatiallyresolvedtranscriptomicbrainatlasdata AT alexfornito overcomingfalsepositivegenecategoryenrichmentintheanalysisofspatiallyresolvedtranscriptomicbrainatlasdata |
_version_ |
1718386371424419840 |