Comparing deep learning with several typical methods in prediction of assessing chlorophyll-a by remote sensing: a case study in Taihu Lake, China
Chlorophyll-a (Chl-a) is an important index in water quality assessment by remote sensing technology. For the study of Chl-a value measurement in rivers or lakes, there are many classical methods, such as curve fitting, back propagation (BP) neural network and radial basis function (RBF) neural netw...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
IWA Publishing
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/a06c06be6e1f41fbbfd7b6ed7f2b7923 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!