Performance evaluation in [18F]Florbetaben brain PET images classification using 3D Convolutional Neural Network.
High accuracy has been reported in deep learning classification for amyloid brain scans, an important factor in Alzheimer's disease diagnosis. However, the possibility of overfitting should be considered, as this model is fitted with sample data. Therefore, we created and evaluated an [18F]Flor...
Enregistré dans:
Auteurs principaux: | Seung-Yeon Lee, Hyeon Kang, Jong-Hun Jeong, Do-Young Kang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a09112f0cd524a27abe6d9d7a267aa2c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: Concordance in detecting amyloid positivity between 18F-florbetaben and 18F-flutemetamol amyloid PET using quantitative and qualitative assessments
par: Soo Hyun Cho, et autres
Publié: (2021) -
Comparison of early F-18 Florbetaben PET/CT to Tc-99m ECD SPECT using voxel, regional, and network analysis
par: Soo Jin Kwon, et autres
Publié: (2021) -
Prediction of Neoadjuvant Chemotherapy Response in Osteosarcoma Using Convolutional Neural Network of Tumor Center <sup>18</sup>F-FDG PET Images
par: Jingyu Kim, et autres
Publié: (2021) -
Multi-Stream Deep Convolutional Neural Network for PET Preform Surface Defects Detection and Classification
par: Taochuan Zhang, et autres
Publié: (2021) -
An Efficient Methodology for Brain MRI Classification Based on DWT and Convolutional Neural Network
par: Muhammad Fayaz, et autres
Publié: (2021)