Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy

Abstract The treatment of patients with ERBB2 (HER2)-positive breast cancer with anti-ERBB2 therapy is based on the detection of ERBB2 gene amplification or protein overexpression. Machine learning (ML) algorithms can predict the amplification of ERBB2 based on tumor morphological features, but it i...

Full description

Saved in:
Bibliographic Details
Main Authors: Dmitrii Bychkov, Nina Linder, Aleksei Tiulpin, Hakan Kücükel, Mikael Lundin, Stig Nordling, Harri Sihto, Jorma Isola, Tiina Lehtimäki, Pirkko-Liisa Kellokumpu-Lehtinen, Karl von Smitten, Heikki Joensuu, Johan Lundin
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/a11d9a652e1d4a5abc61c46e6c7eca99
Tags: Add Tag
No Tags, Be the first to tag this record!