Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy
Abstract The treatment of patients with ERBB2 (HER2)-positive breast cancer with anti-ERBB2 therapy is based on the detection of ERBB2 gene amplification or protein overexpression. Machine learning (ML) algorithms can predict the amplification of ERBB2 based on tumor morphological features, but it i...
Enregistré dans:
Auteurs principaux: | Dmitrii Bychkov, Nina Linder, Aleksei Tiulpin, Hakan Kücükel, Mikael Lundin, Stig Nordling, Harri Sihto, Jorma Isola, Tiina Lehtimäki, Pirkko-Liisa Kellokumpu-Lehtinen, Karl von Smitten, Heikki Joensuu, Johan Lundin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a11d9a652e1d4a5abc61c46e6c7eca99 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription
par: Riina Kaukonen, et autres
Publié: (2016) -
ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer
par: Moghbeli,Meysam, et autres
Publié: (2019) -
Neratinib plus trastuzumab is superior to pertuzumab plus trastuzumab in HER2-positive breast cancer xenograft models
par: Jamunarani Veeraraghavan, et autres
Publié: (2021) -
Role of trastuzumab emtansine in the treatment of HER2-positive breast cancer
par: Oostra DR, et autres
Publié: (2014) -
The efficacy of the combination of eribulin and trastuzumab in advanced HER2-positive breast cancer: the results of Russian observational study
par: Elena I. Kovalenko, et autres
Publié: (2020)