Permutation-based identification of important biomarkers for complex diseases via machine learning models

Study of human disease remains challenging due to convoluted disease etiologies and complex molecular mechanisms at genetic, genomic, and proteomic levels. Here, the authors propose a computationally efficient Permutation-based Feature Importance Test to assist interpretation and selection of indivi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xinlei Mi, Baiming Zou, Fei Zou, Jianhua Hu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a14b8c9fa4db459da160a337cbf281f4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Study of human disease remains challenging due to convoluted disease etiologies and complex molecular mechanisms at genetic, genomic, and proteomic levels. Here, the authors propose a computationally efficient Permutation-based Feature Importance Test to assist interpretation and selection of individual features in complex machine learning models for complex disease analysis.