Cell segmentation-free inference of cell types from in situ transcriptomics data
Inaccurate cell segmentation has been the major problem for cell-type identification and tissue characterization of the in situ spatially resolved transcriptomics data. Here we show a robust cell segmentation-free computational framework (SSAM), for identifying cell types and tissue domains in 2D an...
Guardado en:
Autores principales: | Jeongbin Park, Wonyl Choi, Sebastian Tiesmeyer, Brian Long, Lars E. Borm, Emma Garren, Thuc Nghi Nguyen, Bosiljka Tasic, Simone Codeluppi, Tobias Graf, Matthias Schlesner, Oliver Stegle, Roland Eils, Naveed Ishaque |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a175c0b017934a918d3257520493c81c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Cell segmentation-free inference of cell types from in situ transcriptomics data
por: Jeongbin Park, et al.
Publicado: (2021) -
Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy
por: Teresa G. Krieger, et al.
Publicado: (2021) -
Inference and analysis of cell-cell communication using CellChat
por: Suoqin Jin, et al.
Publicado: (2021) -
Inferring structural variant cancer cell fraction
por: Marek Cmero, et al.
Publicado: (2020) -
MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation
por: Anton Shostak, et al.
Publicado: (2016)