Dendritic normalisation improves learning in sparsely connected artificial neural networks.
Artificial neural networks, taking inspiration from biological neurons, have become an invaluable tool for machine learning applications. Recent studies have developed techniques to effectively tune the connectivity of sparsely-connected artificial neural networks, which have the potential to be mor...
Enregistré dans:
Auteurs principaux: | Alex D Bird, Peter Jedlicka, Hermann Cuntz |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a181e8475b0a4db9adbb0ef0f836a799 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
par: Decebal Constantin Mocanu, et autres
Publié: (2018) -
The morphological identity of insect dendrites.
par: Hermann Cuntz, et autres
Publié: (2008) -
Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks
par: N. Alex Cayco-Gajic, et autres
Publié: (2017) -
Artificial neural networks trained to detect viral and phage structural proteins.
par: Victor Seguritan, et autres
Publié: (2012) -
Sparse-PE: A Performance-Efficient Processing Engine Core for Sparse Convolutional Neural Networks
par: Mahmood Azhar Qureshi, et autres
Publié: (2021)