Bearing Fault Diagnosis via Improved One-Dimensional Multi-Scale Dilated CNN
Bearings are the key and important components of rotating machinery. Effective bearing fault diagnosis can ensure operation safety and reduce maintenance costs. This paper aims to develop a novel bearing fault diagnosis method via an improved multi-scale convolutional neural network (IMSCNN). In tra...
Enregistré dans:
Auteurs principaux: | Jiajun He, Ping Wu, Yizhi Tong, Xujie Zhang, Meizhen Lei, Jinfeng Gao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a1bb9b617351474eb2e88df4e15baac4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field
par: Bin Han, et autres
Publié: (2021) -
A METHODOLOGY FOR THE DETECTION AND DIAGNOSTIC OF LOCALIZED FAULTS IN GEARS AND ROLLING BEARINGS SYSTEMS
par: San Martín,César, et autres
Publié: (2010) -
A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification
par: Dongxu Liu, et autres
Publié: (2021) -
Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet
par: Shih-Lin Lin
Publié: (2021) -
Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review
par: Yuanyuan Yang, et autres
Publié: (2021)