Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm
PurposeThis study aimed to develop and verify a multi-phase (MP) computed tomography (CT)-based radiomics nomogram to differentiate pancreatic serous cystic neoplasms (SCNs) from mucinous cystic neoplasms (MCNs), and to compare the diagnostic efficacy of radiomics models for different phases of CT s...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a1ff5a3e59944f288145b90201f25df2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a1ff5a3e59944f288145b90201f25df2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a1ff5a3e59944f288145b90201f25df22021-12-01T23:57:57ZMulti-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm2234-943X10.3389/fonc.2021.699812https://doaj.org/article/a1ff5a3e59944f288145b90201f25df22021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fonc.2021.699812/fullhttps://doaj.org/toc/2234-943XPurposeThis study aimed to develop and verify a multi-phase (MP) computed tomography (CT)-based radiomics nomogram to differentiate pancreatic serous cystic neoplasms (SCNs) from mucinous cystic neoplasms (MCNs), and to compare the diagnostic efficacy of radiomics models for different phases of CT scans.Materials and MethodsA total of 170 patients who underwent surgical resection between January 2011 and December 2018, with pathologically confirmed pancreatic cystic neoplasms (SCN=115, MCN=55) were included in this single-center retrospective study. Radiomics features were extracted from plain scan (PS), arterial phase (AP), and venous phase (VP) CT scans. Algorithms were performed to identify the optimal features to build a radiomics signature (Radscore) for each phase. All features from these three phases were analyzed to develop the MP-Radscore. A combined model comprised the MP-Radscore and imaging features from which a nomogram was developed. The accuracy of the nomogram was evaluated using receiver operating characteristic (ROC) curves, calibration tests, and decision curve analysis.ResultsFor each scan phase, 1218 features were extracted, and the optimal ones were selected to construct the PS-Radscore (11 features), AP-Radscore (11 features), and VP-Radscore (12 features). The MP-Radscore (14 features) achieved better performance based on ROC curve analysis than any single phase did [area under the curve (AUC), training cohort: MP-Radscore 0.89, PS-Radscore 0.78, AP-Radscore 0.83, VP-Radscore 0.85; validation cohort: MP-Radscore 0.88, PS-Radscore 0.77, AP-Radscore 0.83, VP-Radscore 0.84]. The combination nomogram performance was excellent, surpassing those of all other nomograms in both the training cohort (AUC, 0.91) and validation cohort (AUC, 0.90). The nomogram also performed well in the calibration and decision curve analyses.ConclusionsRadiomics for arterial and venous single-phase models outperformed the plain scan model. The combination nomogram that incorporated the MP-Radscore, tumor location, and cystic number had the best discriminatory performance and showed excellent accuracy for differentiating SCN from MCN.Jiahao GaoJiahao GaoFang HanFang HanXiaoshuang WangShaofeng DuanJiawen ZhangJiawen ZhangFrontiers Media S.A.articlepancreatic cystic neoplasmradiomicsnomogramcontrast-enhanced computed tomography (CECT)texture analysisNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENFrontiers in Oncology, Vol 11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
pancreatic cystic neoplasm radiomics nomogram contrast-enhanced computed tomography (CECT) texture analysis Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 |
spellingShingle |
pancreatic cystic neoplasm radiomics nomogram contrast-enhanced computed tomography (CECT) texture analysis Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 Jiahao Gao Jiahao Gao Fang Han Fang Han Xiaoshuang Wang Shaofeng Duan Jiawen Zhang Jiawen Zhang Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm |
description |
PurposeThis study aimed to develop and verify a multi-phase (MP) computed tomography (CT)-based radiomics nomogram to differentiate pancreatic serous cystic neoplasms (SCNs) from mucinous cystic neoplasms (MCNs), and to compare the diagnostic efficacy of radiomics models for different phases of CT scans.Materials and MethodsA total of 170 patients who underwent surgical resection between January 2011 and December 2018, with pathologically confirmed pancreatic cystic neoplasms (SCN=115, MCN=55) were included in this single-center retrospective study. Radiomics features were extracted from plain scan (PS), arterial phase (AP), and venous phase (VP) CT scans. Algorithms were performed to identify the optimal features to build a radiomics signature (Radscore) for each phase. All features from these three phases were analyzed to develop the MP-Radscore. A combined model comprised the MP-Radscore and imaging features from which a nomogram was developed. The accuracy of the nomogram was evaluated using receiver operating characteristic (ROC) curves, calibration tests, and decision curve analysis.ResultsFor each scan phase, 1218 features were extracted, and the optimal ones were selected to construct the PS-Radscore (11 features), AP-Radscore (11 features), and VP-Radscore (12 features). The MP-Radscore (14 features) achieved better performance based on ROC curve analysis than any single phase did [area under the curve (AUC), training cohort: MP-Radscore 0.89, PS-Radscore 0.78, AP-Radscore 0.83, VP-Radscore 0.85; validation cohort: MP-Radscore 0.88, PS-Radscore 0.77, AP-Radscore 0.83, VP-Radscore 0.84]. The combination nomogram performance was excellent, surpassing those of all other nomograms in both the training cohort (AUC, 0.91) and validation cohort (AUC, 0.90). The nomogram also performed well in the calibration and decision curve analyses.ConclusionsRadiomics for arterial and venous single-phase models outperformed the plain scan model. The combination nomogram that incorporated the MP-Radscore, tumor location, and cystic number had the best discriminatory performance and showed excellent accuracy for differentiating SCN from MCN. |
format |
article |
author |
Jiahao Gao Jiahao Gao Fang Han Fang Han Xiaoshuang Wang Shaofeng Duan Jiawen Zhang Jiawen Zhang |
author_facet |
Jiahao Gao Jiahao Gao Fang Han Fang Han Xiaoshuang Wang Shaofeng Duan Jiawen Zhang Jiawen Zhang |
author_sort |
Jiahao Gao |
title |
Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm |
title_short |
Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm |
title_full |
Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm |
title_fullStr |
Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm |
title_full_unstemmed |
Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm |
title_sort |
multi-phase ct-based radiomics nomogram for discrimination between pancreatic serous cystic neoplasm from mucinous cystic neoplasm |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/a1ff5a3e59944f288145b90201f25df2 |
work_keys_str_mv |
AT jiahaogao multiphasectbasedradiomicsnomogramfordiscriminationbetweenpancreaticserouscysticneoplasmfrommucinouscysticneoplasm AT jiahaogao multiphasectbasedradiomicsnomogramfordiscriminationbetweenpancreaticserouscysticneoplasmfrommucinouscysticneoplasm AT fanghan multiphasectbasedradiomicsnomogramfordiscriminationbetweenpancreaticserouscysticneoplasmfrommucinouscysticneoplasm AT fanghan multiphasectbasedradiomicsnomogramfordiscriminationbetweenpancreaticserouscysticneoplasmfrommucinouscysticneoplasm AT xiaoshuangwang multiphasectbasedradiomicsnomogramfordiscriminationbetweenpancreaticserouscysticneoplasmfrommucinouscysticneoplasm AT shaofengduan multiphasectbasedradiomicsnomogramfordiscriminationbetweenpancreaticserouscysticneoplasmfrommucinouscysticneoplasm AT jiawenzhang multiphasectbasedradiomicsnomogramfordiscriminationbetweenpancreaticserouscysticneoplasmfrommucinouscysticneoplasm AT jiawenzhang multiphasectbasedradiomicsnomogramfordiscriminationbetweenpancreaticserouscysticneoplasmfrommucinouscysticneoplasm |
_version_ |
1718404003733176320 |