ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion
Abstract Background With single-cell RNA sequencing (scRNA-seq) methods, gene expression patterns at the single-cell resolution can be revealed. But as impacted by current technical defects, dropout events in scRNA-seq lead to missing data and noise in the gene-cell expression matrix and adversely a...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a227ddcbfda84bb3beae8230029210ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|