ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion

Abstract Background With single-cell RNA sequencing (scRNA-seq) methods, gene expression patterns at the single-cell resolution can be revealed. But as impacted by current technical defects, dropout events in scRNA-seq lead to missing data and noise in the gene-cell expression matrix and adversely a...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Xiutao Pan, Zhong Li, Shengwei Qin, Minzhe Yu, Hang Hu
Format: article
Langue:EN
Publié: BMC 2021
Sujets:
Accès en ligne:https://doaj.org/article/a227ddcbfda84bb3beae8230029210ad
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!