ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion
Abstract Background With single-cell RNA sequencing (scRNA-seq) methods, gene expression patterns at the single-cell resolution can be revealed. But as impacted by current technical defects, dropout events in scRNA-seq lead to missing data and noise in the gene-cell expression matrix and adversely a...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a227ddcbfda84bb3beae8230029210ad |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|