ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion
Abstract Background With single-cell RNA sequencing (scRNA-seq) methods, gene expression patterns at the single-cell resolution can be revealed. But as impacted by current technical defects, dropout events in scRNA-seq lead to missing data and noise in the gene-cell expression matrix and adversely a...
Guardado en:
Autores principales: | Xiutao Pan, Zhong Li, Shengwei Qin, Minzhe Yu, Hang Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a227ddcbfda84bb3beae8230029210ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
por: Fei Ma, et al.
Publicado: (2021) -
Brain network analyses of diffusion tensor imaging for brain aging
por: Song Xu, et al.
Publicado: (2021) -
Baiting out a full length sequence from unmapped RNA-seq data
por: Dongwei Li, et al.
Publicado: (2021) -
Comparative performance of the GenoLab M and NovaSeq 6000 sequencing platforms for transcriptome and LncRNA analysis
por: Yongfeng Liu, et al.
Publicado: (2021) -
Multiple imputation procedures allow the rescue of missing data: An application to determine serum tumor necrosis factor (TNF) concentration values during the treatment of rheumatoid arthritis patients with anti-TNF therapy
por: SCHIATTINO,IRENE, et al.
Publicado: (2005)