ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion

Abstract Background With single-cell RNA sequencing (scRNA-seq) methods, gene expression patterns at the single-cell resolution can be revealed. But as impacted by current technical defects, dropout events in scRNA-seq lead to missing data and noise in the gene-cell expression matrix and adversely a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiutao Pan, Zhong Li, Shengwei Qin, Minzhe Yu, Hang Hu
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/a227ddcbfda84bb3beae8230029210ad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares