High-throughput phase-field simulations and machine learning of resistive switching in resistive random-access memory
Abstract Metal oxide-based Resistive Random-Access Memory (RRAM) exhibits multiple resistance states, arising from the activation/deactivation of a conductive filament (CF) inside a switching layer. Understanding CF formation kinetics is critical to achieving optimal functionality of RRAM. Here a ph...
Guardado en:
Autores principales: | Kena Zhang, Jianjun Wang, Yuhui Huang, Long-Qing Chen, P. Ganesh, Ye Cao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a30904cc19e94eaf90e48eac97ae9b94 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Designing polymer nanocomposites with high energy density using machine learning
por: Zhong-Hui Shen, et al.
Publicado: (2021) -
High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts
por: Byung Chul Yeo, et al.
Publicado: (2021) -
High-throughput systematic topological generation of low-energy carbon allotropes
por: Vladislav A. Blatov, et al.
Publicado: (2021) -
A high-throughput framework for determining adsorption energies on solid surfaces
por: Joseph H. Montoya, et al.
Publicado: (2017) -
Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution
por: Xinnan Mao, et al.
Publicado: (2021)