High-throughput phase-field simulations and machine learning of resistive switching in resistive random-access memory
Abstract Metal oxide-based Resistive Random-Access Memory (RRAM) exhibits multiple resistance states, arising from the activation/deactivation of a conductive filament (CF) inside a switching layer. Understanding CF formation kinetics is critical to achieving optimal functionality of RRAM. Here a ph...
Enregistré dans:
Auteurs principaux: | Kena Zhang, Jianjun Wang, Yuhui Huang, Long-Qing Chen, P. Ganesh, Ye Cao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a30904cc19e94eaf90e48eac97ae9b94 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Designing polymer nanocomposites with high energy density using machine learning
par: Zhong-Hui Shen, et autres
Publié: (2021) -
High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts
par: Byung Chul Yeo, et autres
Publié: (2021) -
High-throughput systematic topological generation of low-energy carbon allotropes
par: Vladislav A. Blatov, et autres
Publié: (2021) -
A high-throughput framework for determining adsorption energies on solid surfaces
par: Joseph H. Montoya, et autres
Publié: (2017) -
Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution
par: Xinnan Mao, et autres
Publié: (2021)