Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning
Machine learning a defect’s effect A method for quickly predicting the dominant equilibrium atomic-level defects in a material is developed by researchers in the USA. Crystalline materials derive many of their attributes from the regular and symmetric arrangement of their atoms. Consequently, a miss...
Enregistré dans:
Auteurs principaux: | , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a32c20d9819043b39e1bf57b270fa447 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|