Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning

Machine learning a defect’s effect A method for quickly predicting the dominant equilibrium atomic-level defects in a material is developed by researchers in the USA. Crystalline materials derive many of their attributes from the regular and symmetric arrangement of their atoms. Consequently, a miss...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Bharat Medasani, Anthony Gamst, Hong Ding, Wei Chen, Kristin A Persson, Mark Asta, Andrew Canning, Maciej Haranczyk
Format: article
Langue:EN
Publié: Nature Portfolio 2016
Sujets:
Accès en ligne:https://doaj.org/article/a32c20d9819043b39e1bf57b270fa447
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!