Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning
Machine learning a defect’s effect A method for quickly predicting the dominant equilibrium atomic-level defects in a material is developed by researchers in the USA. Crystalline materials derive many of their attributes from the regular and symmetric arrangement of their atoms. Consequently, a miss...
Guardado en:
Autores principales: | Bharat Medasani, Anthony Gamst, Hong Ding, Wei Chen, Kristin A Persson, Mark Asta, Andrew Canning, Maciej Haranczyk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a32c20d9819043b39e1bf57b270fa447 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
por: Zachary M. Gibbs, et al.
Publicado: (2017) -
Four-dimensional imaging of lattice dynamics using ab-initio simulation
por: Navdeep Rana, et al.
Publicado: (2021) -
Ab initio molecular dynamics and materials design for embedded phase-change memory
por: Liang Sun, et al.
Publicado: (2021) -
Machine learning method for tight-binding Hamiltonian parameterization from ab-initio band structure
por: Zifeng Wang, et al.
Publicado: (2021) -
Experimental verification of the ab initio phase transition sequence in SrZrO3 and comparisons with SrHfO3 and SrSnO 3
por: Ashok Kumar, et al.
Publicado: (2017)