Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning
Machine learning a defect’s effect A method for quickly predicting the dominant equilibrium atomic-level defects in a material is developed by researchers in the USA. Crystalline materials derive many of their attributes from the regular and symmetric arrangement of their atoms. Consequently, a miss...
Enregistré dans:
Auteurs principaux: | Bharat Medasani, Anthony Gamst, Hong Ding, Wei Chen, Kristin A Persson, Mark Asta, Andrew Canning, Maciej Haranczyk |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a32c20d9819043b39e1bf57b270fa447 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
par: Zachary M. Gibbs, et autres
Publié: (2017) -
Four-dimensional imaging of lattice dynamics using ab-initio simulation
par: Navdeep Rana, et autres
Publié: (2021) -
Ab initio molecular dynamics and materials design for embedded phase-change memory
par: Liang Sun, et autres
Publié: (2021) -
Machine learning method for tight-binding Hamiltonian parameterization from ab-initio band structure
par: Zifeng Wang, et autres
Publié: (2021) -
Experimental verification of the ab initio phase transition sequence in SrZrO3 and comparisons with SrHfO3 and SrSnO 3
par: Ashok Kumar, et autres
Publié: (2017)