From diffusion in compartmentalized media to non-Gaussian random walks
Abstract In this work we establish a link between two different phenomena that were studied in a large and growing number of biological, composite and soft media: the diffusion in compartmentalized environment and the non-Gaussian diffusion that exhibits linear or power-law growth of the mean square...
Guardado en:
Autores principales: | Jakub Ślęzak, Stanislav Burov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a39640d340fe46e9b86639fda9c1837a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Non-random walk diffusion enhances the sink strength of semicoherent interfaces
por: A. Vattré, et al.
Publicado: (2016) -
Exploring arterial tissue microstructural organization using non-Gaussian diffusion magnetic resonance schemes
por: Syed Salman Shahid, et al.
Publicado: (2021) -
Riemannian Gaussian distributions, random matrix ensembles and diffusion kernels
por: Leonardo Santilli, et al.
Publicado: (2021) -
Diffusive Mass Transfer and Gaussian Pressure Transient Solutions for Porous Media
por: Ruud Weijermars
Publicado: (2021) -
Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks
por: Valery S. Shchesnovich
Publicado: (2017)