From diffusion in compartmentalized media to non-Gaussian random walks
Abstract In this work we establish a link between two different phenomena that were studied in a large and growing number of biological, composite and soft media: the diffusion in compartmentalized environment and the non-Gaussian diffusion that exhibits linear or power-law growth of the mean square...
Enregistré dans:
Auteurs principaux: | Jakub Ślęzak, Stanislav Burov |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a39640d340fe46e9b86639fda9c1837a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Non-random walk diffusion enhances the sink strength of semicoherent interfaces
par: A. Vattré, et autres
Publié: (2016) -
Exploring arterial tissue microstructural organization using non-Gaussian diffusion magnetic resonance schemes
par: Syed Salman Shahid, et autres
Publié: (2021) -
Riemannian Gaussian distributions, random matrix ensembles and diffusion kernels
par: Leonardo Santilli, et autres
Publié: (2021) -
Diffusive Mass Transfer and Gaussian Pressure Transient Solutions for Porous Media
par: Ruud Weijermars
Publié: (2021) -
Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks
par: Valery S. Shchesnovich
Publié: (2017)