Application of Probabilistic Neural Networks Using High-Frequency Components’ Differential Current for Transformer Protection Schemes to Discriminate between External Faults and Internal Winding Faults in Power Transformers
Internal and external faults in a power transformer are discriminated in this paper using an algorithm based on a combination of a discrete wavelet transform (DWT) and a probabilistic neural network (PNN). DWT decomposes high-frequency fault components using the maximum coefficients of a ¼ cycle DWT...
Guardado en:
Autores principales: | Pathomthat Chiradeja, Chaichan Pothisarn, Nattanon Phannil, Santipont Ananwattananporn, Monthon Leelajindakrairerk, Atthapol Ngaopitakkul, Surakit Thongsuk, Vinai Pornpojratanakul, Sulee Bunjongjit, Suntiti Yoomak |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a4e3e09087534ae796ca94864acbd9e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Framework for Centrifugal Pump Fault Diagnosis by Selecting Fault Characteristic Coefficients of Walsh Transform and Cosine Linear Discriminant Analysis
por: Zahoor Ahmad, et al.
Publicado: (2021) -
“Thinking Transformations” – an Introduction to the Issues
por: Jean-Marie Barbier, et al.
Publicado: (2021) -
Reproducing inversion formulas for the Dunkl-Wigner transforms
por: Soltani,Fethi
Publicado: (2015) -
Ethanol mediated enhancement in bacterial transformation
por: Sharma,Arun Dev, et al.
Publicado: (2007) -
Decarbonization of Distribution Transformers Based on Current Reduction: Economic and Environmental Impacts
por: Vicente León-Martínez, et al.
Publicado: (2021)