Application of Probabilistic Neural Networks Using High-Frequency Components’ Differential Current for Transformer Protection Schemes to Discriminate between External Faults and Internal Winding Faults in Power Transformers
Internal and external faults in a power transformer are discriminated in this paper using an algorithm based on a combination of a discrete wavelet transform (DWT) and a probabilistic neural network (PNN). DWT decomposes high-frequency fault components using the maximum coefficients of a ¼ cycle DWT...
Enregistré dans:
Auteurs principaux: | Pathomthat Chiradeja, Chaichan Pothisarn, Nattanon Phannil, Santipont Ananwattananporn, Monthon Leelajindakrairerk, Atthapol Ngaopitakkul, Surakit Thongsuk, Vinai Pornpojratanakul, Sulee Bunjongjit, Suntiti Yoomak |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a4e3e09087534ae796ca94864acbd9e0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Novel Framework for Centrifugal Pump Fault Diagnosis by Selecting Fault Characteristic Coefficients of Walsh Transform and Cosine Linear Discriminant Analysis
par: Zahoor Ahmad, et autres
Publié: (2021) -
“Thinking Transformations” – an Introduction to the Issues
par: Jean-Marie Barbier, et autres
Publié: (2021) -
Reproducing inversion formulas for the Dunkl-Wigner transforms
par: Soltani,Fethi
Publié: (2015) -
Ethanol mediated enhancement in bacterial transformation
par: Sharma,Arun Dev, et autres
Publié: (2007) -
Decarbonization of Distribution Transformers Based on Current Reduction: Economic and Environmental Impacts
par: Vicente León-Martínez, et autres
Publié: (2021)