Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <italic toggle="yes">Pseudomonas putida</italic> Lysine Metabolism

ABSTRACT Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links, we leveraged random barcode transposon sequencing (RB-TnSeq), a genome-wide assay measuring...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mitchell G. Thompson, Jacquelyn M. Blake-Hedges, Pablo Cruz-Morales, Jesus F. Barajas, Samuel C. Curran, Christopher B. Eiben, Nicholas C. Harris, Veronica T. Benites, Jennifer W. Gin, William A. Sharpless, Frederick F. Twigg, Will Skyrud, Rohith N. Krishna, Jose Henrique Pereira, Edward E. K. Baidoo, Christopher J. Petzold, Paul D. Adams, Adam P. Arkin, Adam M. Deutschbauer, Jay D. Keasling
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/a71a6236dda04344a17ff1e8947b3078
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a71a6236dda04344a17ff1e8947b3078
record_format dspace
spelling oai:doaj.org-article:a71a6236dda04344a17ff1e8947b30782021-11-15T15:55:24ZMassively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <italic toggle="yes">Pseudomonas putida</italic> Lysine Metabolism10.1128/mBio.02577-182150-7511https://doaj.org/article/a71a6236dda04344a17ff1e8947b30782019-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02577-18https://doaj.org/toc/2150-7511ABSTRACT Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links, we leveraged random barcode transposon sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both l- and d-lysine metabolism. We first describe three pathway enzymes that catabolize l-2-aminoadipate (l-2AA) to 2-ketoglutarate (2KG), connecting d-lysine to the TCA cycle. One of these enzymes, P. putida 5260 (PP_5260), contains a DUF1338 domain, representing a family with no previously described biological function. Our work also identified the recently described coenzyme A (CoA)-independent route of l-lysine degradation that results in metabolization to succinate. We expanded on previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-oxoacid selectivity. Proteomics of selected pathway enzymes revealed that expression of catabolic genes is highly sensitive to the presence of particular pathway metabolites, implying intensive local and global regulation. This work demonstrated the utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as its utility a powerful tool for validating previous research. IMPORTANCE P. putida lysine metabolism can produce multiple commodity chemicals, conferring great biotechnological value. Despite much research, the connection of lysine catabolism to central metabolism in P. putida remained undefined. Here, we used random barcode transposon sequencing to fill the gaps of lysine metabolism in P. putida. We describe a route of 2-oxoadipate (2OA) catabolism, which utilizes DUF1338-containing protein P. putida 5260 (PP_5260) in bacteria. Despite its prevalence in many domains of life, DUF1338-containing proteins have had no known biochemical function. We demonstrate that PP_5260 is a metalloenzyme which catalyzes an unusual route of decarboxylation of 2OA to d-2-hydroxyglutarate (d-2HG). Our screen also identified a recently described novel glutarate metabolic pathway. We validate previous results and expand the understanding of glutarate hydroxylase CsiD by showing that can it use either 2OA or 2KG as a cosubstrate. Our work demonstrated that biological novelty can be rapidly identified using unbiased experimental genetics and that RB-TnSeq can be used to rapidly validate previous results.Mitchell G. ThompsonJacquelyn M. Blake-HedgesPablo Cruz-MoralesJesus F. BarajasSamuel C. CurranChristopher B. EibenNicholas C. HarrisVeronica T. BenitesJennifer W. GinWilliam A. SharplessFrederick F. TwiggWill SkyrudRohith N. KrishnaJose Henrique PereiraEdward E. K. BaidooChristopher J. PetzoldPaul D. AdamsAdam P. ArkinAdam M. DeutschbauerJay D. KeaslingAmerican Society for MicrobiologyarticlebiochemistrybiotechnologygenomicsmetabolismtransposonsMicrobiologyQR1-502ENmBio, Vol 10, Iss 3 (2019)
institution DOAJ
collection DOAJ
language EN
topic biochemistry
biotechnology
genomics
metabolism
transposons
Microbiology
QR1-502
spellingShingle biochemistry
biotechnology
genomics
metabolism
transposons
Microbiology
QR1-502
Mitchell G. Thompson
Jacquelyn M. Blake-Hedges
Pablo Cruz-Morales
Jesus F. Barajas
Samuel C. Curran
Christopher B. Eiben
Nicholas C. Harris
Veronica T. Benites
Jennifer W. Gin
William A. Sharpless
Frederick F. Twigg
Will Skyrud
Rohith N. Krishna
Jose Henrique Pereira
Edward E. K. Baidoo
Christopher J. Petzold
Paul D. Adams
Adam P. Arkin
Adam M. Deutschbauer
Jay D. Keasling
Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <italic toggle="yes">Pseudomonas putida</italic> Lysine Metabolism
description ABSTRACT Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links, we leveraged random barcode transposon sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both l- and d-lysine metabolism. We first describe three pathway enzymes that catabolize l-2-aminoadipate (l-2AA) to 2-ketoglutarate (2KG), connecting d-lysine to the TCA cycle. One of these enzymes, P. putida 5260 (PP_5260), contains a DUF1338 domain, representing a family with no previously described biological function. Our work also identified the recently described coenzyme A (CoA)-independent route of l-lysine degradation that results in metabolization to succinate. We expanded on previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-oxoacid selectivity. Proteomics of selected pathway enzymes revealed that expression of catabolic genes is highly sensitive to the presence of particular pathway metabolites, implying intensive local and global regulation. This work demonstrated the utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as its utility a powerful tool for validating previous research. IMPORTANCE P. putida lysine metabolism can produce multiple commodity chemicals, conferring great biotechnological value. Despite much research, the connection of lysine catabolism to central metabolism in P. putida remained undefined. Here, we used random barcode transposon sequencing to fill the gaps of lysine metabolism in P. putida. We describe a route of 2-oxoadipate (2OA) catabolism, which utilizes DUF1338-containing protein P. putida 5260 (PP_5260) in bacteria. Despite its prevalence in many domains of life, DUF1338-containing proteins have had no known biochemical function. We demonstrate that PP_5260 is a metalloenzyme which catalyzes an unusual route of decarboxylation of 2OA to d-2-hydroxyglutarate (d-2HG). Our screen also identified a recently described novel glutarate metabolic pathway. We validate previous results and expand the understanding of glutarate hydroxylase CsiD by showing that can it use either 2OA or 2KG as a cosubstrate. Our work demonstrated that biological novelty can be rapidly identified using unbiased experimental genetics and that RB-TnSeq can be used to rapidly validate previous results.
format article
author Mitchell G. Thompson
Jacquelyn M. Blake-Hedges
Pablo Cruz-Morales
Jesus F. Barajas
Samuel C. Curran
Christopher B. Eiben
Nicholas C. Harris
Veronica T. Benites
Jennifer W. Gin
William A. Sharpless
Frederick F. Twigg
Will Skyrud
Rohith N. Krishna
Jose Henrique Pereira
Edward E. K. Baidoo
Christopher J. Petzold
Paul D. Adams
Adam P. Arkin
Adam M. Deutschbauer
Jay D. Keasling
author_facet Mitchell G. Thompson
Jacquelyn M. Blake-Hedges
Pablo Cruz-Morales
Jesus F. Barajas
Samuel C. Curran
Christopher B. Eiben
Nicholas C. Harris
Veronica T. Benites
Jennifer W. Gin
William A. Sharpless
Frederick F. Twigg
Will Skyrud
Rohith N. Krishna
Jose Henrique Pereira
Edward E. K. Baidoo
Christopher J. Petzold
Paul D. Adams
Adam P. Arkin
Adam M. Deutschbauer
Jay D. Keasling
author_sort Mitchell G. Thompson
title Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <italic toggle="yes">Pseudomonas putida</italic> Lysine Metabolism
title_short Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <italic toggle="yes">Pseudomonas putida</italic> Lysine Metabolism
title_full Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <italic toggle="yes">Pseudomonas putida</italic> Lysine Metabolism
title_fullStr Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <italic toggle="yes">Pseudomonas putida</italic> Lysine Metabolism
title_full_unstemmed Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <italic toggle="yes">Pseudomonas putida</italic> Lysine Metabolism
title_sort massively parallel fitness profiling reveals multiple novel enzymes in <italic toggle="yes">pseudomonas putida</italic> lysine metabolism
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/a71a6236dda04344a17ff1e8947b3078
work_keys_str_mv AT mitchellgthompson massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT jacquelynmblakehedges massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT pablocruzmorales massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT jesusfbarajas massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT samuelccurran massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT christopherbeiben massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT nicholascharris massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT veronicatbenites massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT jenniferwgin massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT williamasharpless massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT frederickftwigg massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT willskyrud massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT rohithnkrishna massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT josehenriquepereira massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT edwardekbaidoo massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT christopherjpetzold massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT pauldadams massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT adamparkin massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT adammdeutschbauer massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
AT jaydkeasling massivelyparallelfitnessprofilingrevealsmultiplenovelenzymesinitalictoggleyespseudomonasputidaitaliclysinemetabolism
_version_ 1718427167487950848