Data-driven risk stratification for preterm birth in Brazil: a population-based study to develop of a machine learning risk assessment approach

Background: Preterm birth (PTB) is a growing health issue worldwide, currently considered the leading cause of newborn deaths. To address this challenge, the present work aims to develop an algorithm capable of accurately predicting the week of delivery supporting the identification of a PTB in Braz...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Thiago Augusto Hernandes Rocha, Erika Bárbara Abreu Fonseca de Thomaz, Dante Grapiuna de Almeida, Núbia Cristina da Silva, Rejane Christine de Sousa Queiroz, Luciano Andrade, Luiz Augusto Facchini, Marcos Luiggi Lemos Sartori, Dalton Breno Costa, Marcos Adriano Garcia Campos, Antônio Augusto Moura da Silva, Catherine Staton, João Ricardo Nickenig Vissoci
Format: article
Langue:EN
Publié: Elsevier 2021
Sujets:
Accès en ligne:https://doaj.org/article/a7a8f971ee9d4de898f1f5399ba79c3e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires