Metaknowledge Extraction Based on Multi-Modal Documents
The triplet-based knowledge in large-scale knowledge bases is most likely lacking in structural logic and problematic of conducting knowledge hierarchy. In this paper, we introduce the concept of metaknowledge to knowledge engineering research for the purpose of structural knowledge construction. Th...
Enregistré dans:
Auteurs principaux: | Shu-Kan Liu, Rui-Lin Xu, Bo-Ying Geng, Qiao Sun, Li Duan, Yi-Ming Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a8ccb9c6d91348e882481d887a4bde28 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Accurate Fine-Grained Layout Analysis for the Historical Tibetan Document Based on the Instance Segmentation
par: Penghai Zhao, et autres
Publié: (2021) -
Deep Learning in Time-Frequency Domain for Document Layout Analysis
par: Felipe Grijalva, et autres
Publié: (2021) -
Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
par: Jiajia Wu, et autres
Publié: (2021) -
Development Strategy for Air–Ground Collaborative Multi-Modal Intelligent Robot System
par: Huang Qiang, Meng Fei, Yu Zhangguo, Lin Defu, Xu Bin, Duo Yingxian
Publié: (2021) -
Multi-modal Deep Learning and Its Applications in Ophthalmic Artificial Intelligence
par: LI Xirong
Publié: (2021)