Task complexity interacts with state-space uncertainty in the arbitration between model-based and model-free learning
The brain dynamically arbitrates between two model-based and model-free reinforcement learning (RL). Here, the authors show that participants tended to increase model-based control in response to increasing task complexity, but resorted to model-free when both uncertainty and task complexity were hi...
Enregistré dans:
Auteurs principaux: | Dongjae Kim, Geon Yeong Park, John P. O′Doherty, Sang Wan Lee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a966c6e9a9d94f03aa0fe7722aa4c2e6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The leading arbitrators' guide to international arbitration
Publié: (2004) -
Jurisprudencia arbitral /
Publié: (2014) - Reglamento arbitral
-
Arbitration in Spain /
Publié: (1991) -
Models for the interaction between space services providers and manufacturers of space vehicles
par: Dmitry Ivanov, et autres
Publié: (2018)