Boron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects

Abstract Boron (B) doping of silicon nanocrystals requires the incorporation of a B-atom on a lattice site of the quantum dot and its ionization at room temperature. In case of successful B-doping the majority carriers (holes) should quench the photoluminescence of Si nanocrystals via non-radiative...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel Hiller, Julian López-Vidrier, Sebastian Gutsch, Margit Zacharias, Michael Wahl, Wolfgang Bock, Alexander Brodyanski, Michael Kopnarski, Keita Nomoto, Jan Valenta, Dirk König
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/aa3a48c9bf124fddb07cb48c20ef97e0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:aa3a48c9bf124fddb07cb48c20ef97e0
record_format dspace
spelling oai:doaj.org-article:aa3a48c9bf124fddb07cb48c20ef97e02021-12-02T16:07:00ZBoron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects10.1038/s41598-017-08814-02045-2322https://doaj.org/article/aa3a48c9bf124fddb07cb48c20ef97e02017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08814-0https://doaj.org/toc/2045-2322Abstract Boron (B) doping of silicon nanocrystals requires the incorporation of a B-atom on a lattice site of the quantum dot and its ionization at room temperature. In case of successful B-doping the majority carriers (holes) should quench the photoluminescence of Si nanocrystals via non-radiative Auger recombination. In addition, the holes should allow for a non-transient electrical current. However, on the bottom end of the nanoscale, both substitutional incorporation and ionization are subject to significant increase in their respective energies due to confinement and size effects. Nevertheless, successful B-doping of Si nanocrystals was reported for certain structural conditions. Here, we investigate B-doping for small, well-dispersed Si nanocrystals with low and moderate B-concentrations. While small amounts of B-atoms are incorporated into these nanocrystals, they hardly affect their optical or electrical properties. If the B-concentration exceeds ~1 at%, the luminescence quantum yield is significantly quenched, whereas electrical measurements do not reveal free carriers. This observation suggests a photoluminescence quenching mechanism based on B-induced defect states. By means of density functional theory calculations, we prove that B creates multiple states in the bandgap of Si and SiO2. We conclude that non-percolated ultra-small Si nanocrystals cannot be efficiently B-doped.Daniel HillerJulian López-VidrierSebastian GutschMargit ZachariasMichael WahlWolfgang BockAlexander BrodyanskiMichael KopnarskiKeita NomotoJan ValentaDirk KönigNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Daniel Hiller
Julian López-Vidrier
Sebastian Gutsch
Margit Zacharias
Michael Wahl
Wolfgang Bock
Alexander Brodyanski
Michael Kopnarski
Keita Nomoto
Jan Valenta
Dirk König
Boron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects
description Abstract Boron (B) doping of silicon nanocrystals requires the incorporation of a B-atom on a lattice site of the quantum dot and its ionization at room temperature. In case of successful B-doping the majority carriers (holes) should quench the photoluminescence of Si nanocrystals via non-radiative Auger recombination. In addition, the holes should allow for a non-transient electrical current. However, on the bottom end of the nanoscale, both substitutional incorporation and ionization are subject to significant increase in their respective energies due to confinement and size effects. Nevertheless, successful B-doping of Si nanocrystals was reported for certain structural conditions. Here, we investigate B-doping for small, well-dispersed Si nanocrystals with low and moderate B-concentrations. While small amounts of B-atoms are incorporated into these nanocrystals, they hardly affect their optical or electrical properties. If the B-concentration exceeds ~1 at%, the luminescence quantum yield is significantly quenched, whereas electrical measurements do not reveal free carriers. This observation suggests a photoluminescence quenching mechanism based on B-induced defect states. By means of density functional theory calculations, we prove that B creates multiple states in the bandgap of Si and SiO2. We conclude that non-percolated ultra-small Si nanocrystals cannot be efficiently B-doped.
format article
author Daniel Hiller
Julian López-Vidrier
Sebastian Gutsch
Margit Zacharias
Michael Wahl
Wolfgang Bock
Alexander Brodyanski
Michael Kopnarski
Keita Nomoto
Jan Valenta
Dirk König
author_facet Daniel Hiller
Julian López-Vidrier
Sebastian Gutsch
Margit Zacharias
Michael Wahl
Wolfgang Bock
Alexander Brodyanski
Michael Kopnarski
Keita Nomoto
Jan Valenta
Dirk König
author_sort Daniel Hiller
title Boron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects
title_short Boron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects
title_full Boron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects
title_fullStr Boron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects
title_full_unstemmed Boron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects
title_sort boron-incorporating silicon nanocrystals embedded in sio2: absence of free carriers vs. b-induced defects
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/aa3a48c9bf124fddb07cb48c20ef97e0
work_keys_str_mv AT danielhiller boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT julianlopezvidrier boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT sebastiangutsch boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT margitzacharias boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT michaelwahl boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT wolfgangbock boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT alexanderbrodyanski boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT michaelkopnarski boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT keitanomoto boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT janvalenta boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
AT dirkkonig boronincorporatingsiliconnanocrystalsembeddedinsio2absenceoffreecarriersvsbinduceddefects
_version_ 1718384797711073280