AUV Obstacle Avoidance Planning Based on Deep Reinforcement Learning
In a complex underwater environment, finding a viable, collision-free path for an autonomous underwater vehicle (AUV) is a challenging task. The purpose of this paper is to establish a safe, real-time, and robust method of collision avoidance that improves the autonomy of AUVs. We propose a method b...
Guardado en:
Autores principales: | Jianya Yuan, Hongjian Wang, Honghan Zhang, Changjian Lin, Dan Yu, Chengfeng Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa4f8fea66634cbb8579ebfc57708835 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Coordination System between Decision Making and Controlling for Autonomous Collision Avoidance of Large Intelligent Ships
por: Zhengyu Zhou, et al.
Publicado: (2021) -
Physics-Based Simulation of AUV Forced Diving by Self-Propulsion
por: WU Lihong, et al.
Publicado: (2021) -
Motion Control of Autonomous Underwater Vehicle Based on Fractional Calculus Active Disturbance Rejection
por: Junhe Wan, et al.
Publicado: (2021) -
Path Planning for Underwater Information Gathering Based on Genetic Algorithms and Data Stochastic Models
por: Matteo Bresciani, et al.
Publicado: (2021) -
An Efficient Void Aware Framework for Enabling Internet of Underwater Things
por: Ahmad M. Khasawneh, et al.
Publicado: (2021)