Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions

Finding a biologically-relevant inductive bias for training DNNs on large fitness landscapes is challenging. Here, the authors propose a method called Epistatic Net that improves DNN prediction accuracy and interpretation speed by integrating the knowledge that higher-order epistatic interactions ar...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Amirali Aghazadeh, Hunter Nisonoff, Orhan Ocal, David H. Brookes, Yijie Huang, O. Ozan Koyluoglu, Jennifer Listgarten, Kannan Ramchandran
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/aaa0481b36da43839b3bcab8d8fbcc3a
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Finding a biologically-relevant inductive bias for training DNNs on large fitness landscapes is challenging. Here, the authors propose a method called Epistatic Net that improves DNN prediction accuracy and interpretation speed by integrating the knowledge that higher-order epistatic interactions are usually sparse.