Universal count correction for high-throughput sequencing.

We show that existing RNA-seq, DNase-seq, and ChIP-seq data exhibit overdispersed per-base read count distributions that are not matched to existing computational method assumptions. To compensate for this overdispersion we introduce a nonparametric and universal method for processing per-base seque...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tatsunori B Hashimoto, Matthew D Edwards, David K Gifford
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
Acceso en línea:https://doaj.org/article/aaa72ea7909044b3a8ea6b54b5804812
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:aaa72ea7909044b3a8ea6b54b5804812
record_format dspace
spelling oai:doaj.org-article:aaa72ea7909044b3a8ea6b54b58048122021-11-18T05:53:06ZUniversal count correction for high-throughput sequencing.1553-734X1553-735810.1371/journal.pcbi.1003494https://doaj.org/article/aaa72ea7909044b3a8ea6b54b58048122014-03-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24603409/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358We show that existing RNA-seq, DNase-seq, and ChIP-seq data exhibit overdispersed per-base read count distributions that are not matched to existing computational method assumptions. To compensate for this overdispersion we introduce a nonparametric and universal method for processing per-base sequencing read count data called FIXSEQ. We demonstrate that FIXSEQ substantially improves the performance of existing RNA-seq, DNase-seq, and ChIP-seq analysis tools when compared with existing alternatives.Tatsunori B HashimotoMatthew D EdwardsDavid K GiffordPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 10, Iss 3, p e1003494 (2014)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Tatsunori B Hashimoto
Matthew D Edwards
David K Gifford
Universal count correction for high-throughput sequencing.
description We show that existing RNA-seq, DNase-seq, and ChIP-seq data exhibit overdispersed per-base read count distributions that are not matched to existing computational method assumptions. To compensate for this overdispersion we introduce a nonparametric and universal method for processing per-base sequencing read count data called FIXSEQ. We demonstrate that FIXSEQ substantially improves the performance of existing RNA-seq, DNase-seq, and ChIP-seq analysis tools when compared with existing alternatives.
format article
author Tatsunori B Hashimoto
Matthew D Edwards
David K Gifford
author_facet Tatsunori B Hashimoto
Matthew D Edwards
David K Gifford
author_sort Tatsunori B Hashimoto
title Universal count correction for high-throughput sequencing.
title_short Universal count correction for high-throughput sequencing.
title_full Universal count correction for high-throughput sequencing.
title_fullStr Universal count correction for high-throughput sequencing.
title_full_unstemmed Universal count correction for high-throughput sequencing.
title_sort universal count correction for high-throughput sequencing.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/aaa72ea7909044b3a8ea6b54b5804812
work_keys_str_mv AT tatsunoribhashimoto universalcountcorrectionforhighthroughputsequencing
AT matthewdedwards universalcountcorrectionforhighthroughputsequencing
AT davidkgifford universalcountcorrectionforhighthroughputsequencing
_version_ 1718424686172307456