Universal count correction for high-throughput sequencing.
We show that existing RNA-seq, DNase-seq, and ChIP-seq data exhibit overdispersed per-base read count distributions that are not matched to existing computational method assumptions. To compensate for this overdispersion we introduce a nonparametric and universal method for processing per-base seque...
Guardado en:
Autores principales: | Tatsunori B Hashimoto, Matthew D Edwards, David K Gifford |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aaa72ea7909044b3a8ea6b54b5804812 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Bayesian framework to identify methylcytosines from high-throughput bisulfite sequencing data.
por: Qing Xie, et al.
Publicado: (2014) -
Author Correction: Identification of genes required for eye development by high-throughput screening of mouse knockouts
por: Bret A. Moore, et al.
Publicado: (2019) -
Discovering differential genome sequence activity with interpretable and efficient deep learning.
por: Jennifer Hammelman, et al.
Publicado: (2021) -
High-throughput Interpretation of Killer-cell Immunoglobulin-like Receptor Short-read Sequencing Data with PING.
por: Wesley M Marin, et al.
Publicado: (2021) -
High-throughput sequencing defines donor and recipient HLA B-cell epitope frequencies for prospective matching in transplantation
por: Jenny N. Tran, et al.
Publicado: (2021)