Information-Corrected Estimation: A Generalization Error Reducing Parameter Estimation Method

Modern computational models in supervised machine learning are often highly parameterized universal approximators. As such, the value of the parameters is unimportant, and only the out of sample performance is considered. On the other hand much of the literature on model estimation assumes that the...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Matthew Dixon, Tyler Ward
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/ab0ad735d21a46f785cc82159c6ac2f9
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!