Information-Corrected Estimation: A Generalization Error Reducing Parameter Estimation Method
Modern computational models in supervised machine learning are often highly parameterized universal approximators. As such, the value of the parameters is unimportant, and only the out of sample performance is considered. On the other hand much of the literature on model estimation assumes that the...
Guardado en:
Autores principales: | Matthew Dixon, Tyler Ward |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab0ad735d21a46f785cc82159c6ac2f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Entropy-Based Anti-Noise Method for Reducing Ranging Error in Photon Counting Lidar
por: Mingwei Huang, et al.
Publicado: (2021) -
Fundamental limits and optimal estimation of the resonance frequency of a linear harmonic oscillator
por: Mingkang Wang, et al.
Publicado: (2021) -
On Conditional Tsallis Entropy
por: Andreia Teixeira, et al.
Publicado: (2021) -
A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks
por: Andrei Velichko, et al.
Publicado: (2021) -
Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension
por: Karsten Jedamzik, et al.
Publicado: (2021)