Information-Corrected Estimation: A Generalization Error Reducing Parameter Estimation Method
Modern computational models in supervised machine learning are often highly parameterized universal approximators. As such, the value of the parameters is unimportant, and only the out of sample performance is considered. On the other hand much of the literature on model estimation assumes that the...
Enregistré dans:
Auteurs principaux: | Matthew Dixon, Tyler Ward |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ab0ad735d21a46f785cc82159c6ac2f9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Entropy-Based Anti-Noise Method for Reducing Ranging Error in Photon Counting Lidar
par: Mingwei Huang, et autres
Publié: (2021) -
Fundamental limits and optimal estimation of the resonance frequency of a linear harmonic oscillator
par: Mingkang Wang, et autres
Publié: (2021) -
On Conditional Tsallis Entropy
par: Andreia Teixeira, et autres
Publié: (2021) -
A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks
par: Andrei Velichko, et autres
Publié: (2021) -
Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension
par: Karsten Jedamzik, et autres
Publié: (2021)