Nonlinear delay differential equations and their application to modeling biological network motifs
Network motif models focus on small sub-networks in biological systems to quantitatively describe overall behavior but they often overlook time delays. Here, the authors systematically examine the most common network motifs via delay differential equations (DDE), often leading to more concise descri...
Enregistré dans:
Auteurs principaux: | David S. Glass, Xiaofan Jin, Ingmar H. Riedel-Kruse |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/aba959ab8e8b4d49bc6ed53854e3b5b3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Asymptotic stability in delay nonlinear fractional differential equations
par: Ardjouni,A, et autres
Publié: (2016) -
EXISTENCE AND STABILITY IN THE α-NORM FOR NONLINEAR NEUTRAL PARTIAL DIFFERENTIAL EQUATIONS WITH FINITE DELAY
par: Chitioui,Taoufik, et autres
Publié: (2013) -
Oscillation results for a certain class of fourth-order nonlinear delay differential equations
par: Moaaz,Osama, et autres
Publié: (2021) -
Stability in totally nonlinear neutral differential equations with variable delay using fixed point theory
par: Ardjouni,Abdelouaheb, et autres
Publié: (2015) -
Differential equations & nonlinear mechanics
Publié: (2006)