Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
Bulk tissue RNA-seq data reveals transcriptomic profiles but masks the contributions of different cell types. Here, the authors develop a new method for estimating cell type proportions from bulk tissue RNA-seq data guided by multi-subject single-cell expression reference.
Guardado en:
Autores principales: | Xuran Wang, Jihwan Park, Katalin Susztak, Nancy R. Zhang, Mingyao Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ac842de2714346f8a022547ffa6e51ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
por: Longqi Liu, et al.
Publicado: (2019) -
DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data
por: Wanwen Zeng, et al.
Publicado: (2019) -
Deconvolution of Bulk Gene Expression Profiles with Single-Cell Transcriptomics to Develop a Cell Type Composition-Based Prognostic Model for Acute Myeloid Leukemia
por: Chengguqiu Dai, et al.
Publicado: (2021) -
Single-Cell Approaches to Deconvolute the Development of HSCs
por: Yang Xiang, et al.
Publicado: (2021) -
Multi-tissue spherical deconvolution of tensor-valued diffusion MRI
por: Ben Jeurissen, et al.
Publicado: (2021)