Uncertainty quantification for deep learning in particle accelerator applications

With the advent of increased computational resources and improved algorithms, machine learning-based models are being increasingly applied to complex problems in particle accelerators. However, such data-driven models may provide overly confident predictions with unknown errors and uncertainties. Fo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aashwin Ananda Mishra, Auralee Edelen, Adi Hanuka, Christopher Mayes
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/ad0580f82c8f4e67999e607a714d29f5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!